Wiener Universitäre Schriften Ausgabe Sommer 2023 Grossetti, Q., du Mouza, C., Travers, N. (2019). Community-Based Recommendations on Twitter: Avoiding the Filter Bubble. In: "Web Information Systems Engineering- WISE 2019". Eds.: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. Springer Nature Switzerland. 212-226. Kitchens, B., Johnson, S. L., Gray, P. (2020). Understanding Echo Chambers and Filter Bubbles: The Impact of Social Media on Diversification and Partisan Shifts in News Consumption. MIS Quarterly. Vol. 44. Nr. 4. 1619-1649. Knijnenburg, B. P., Sivakumar, S., Wilkinson, D. (2016). Recommender Systems for Self- Actualization. RecSys '16: Proceedings of the 10th ACM Conference on Recommender Systems. 11-14. Li, Z., Dong, Y., Gao, C., Zhao, Y., Li, D., Hao, J., Zhang, K., Li, Y., Wang, Z. (2023). Breaking Filter Bubble: A Reinforcement Learning Framework of Controllable Recommender System. WWW '23: Proceedings of the ACM Web Conference 2023. 4041-4049. Maccatrozzo, V. (2012). Burst the Filter Bubble: Using Semantic Web to Enable Serendipity. In: " The Semantic Web- ISWC 2012". Eds.: Cudré-Maroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber, G., Bernstein, A., Blomquist, E. Springer. 391-397. Matt, C., Benlian, A., Hess, T., Weiß, C. (2014). Escaping from the Filter Bubble? The Effects of Novelty and Serendipity on User's Evaluations of Online Recommendations. Proceedings of the 2014 International Conference on Information Systems. Auckland, New Zealand. Mertens, S., d'Haenens, L., De Cock, R. (2019). Online News Consumption and Public Sentiment toward Refugees: Is there a Filter Bubble at Play? Belgium, France, the Netherlands, and Sweden: A Comparison. In: "Images of Immigrants and Refugees in Western Europe: Media Representations, Public Opinion and Refugee's Experiences". Eds.: d'Haenens, L., Joris, W., Heinderyckx, F. 141-156. Min, S. J., Wohn, D. Y. (2020). Underneath the Filter Bubble: The Role of Weak Ties and Network Cultural Diversity in Cross-Cutting Exposure to Disagreements on Social Media. The Journal of Social Media in Society. Vol. 9. Nr. 1. 22-38. Min, Y., Jiang, T., Jin, C., Li, Q., Jin, Y. (2019). Endogenetic structure of filter bubble in social networks. Royal Society Open Science. Vol. 6. Miranda Veloso, B. (2019). Stochastic Models to Improve E-News Recommender Systems. In: "Advances in Conceptual Modeling". Eds.: Guizzardi, G., Gailly, F., Pitangueira Maciel, R. S.Springer Nature Switzerland. 255-262. Moeller, J., Helberger, N. (2018). Beyond the filter bubble: Concepts, myths, evidence and issues for future debates. University of Amsterdam. Pariser, E. (2011). The filter bubble: What the internet is hiding from you. New York: Penguin Press. Rohmatul Hidayah, A. (2018). Persecution Act as Filter Bubble Effect: Digital Society and The Shift of Public Sphere. Jurnal Ilmu Sosial dan Ilmu Politik, Vol. 22. Nr. 2. 112-126. Ross Arguedas, A., Robertson, C. T., Fletcher, R., Nielsen, R. K. (2022). Echo Chambers, Filter Bubbles, and Polarisation: a Literature Review. The Royal Society. Reuters Institute. Sun, J., Song, J., Jiang, Y., Liu, Y., Li, J. (2021). Prick the filter bubble: A novel cross domain recommendation model with adaptive diversity regularization. Electronic Markets. Springer. Tredinnick, L., Laybats, C. (2019). Reality filters: Disinformation and fake news. Business Information Review, Vol. 36. Nr. 3. 92-94. 77 Seite 13